Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering.
نویسندگان
چکیده
The development of biologically and mechanically competent hydrogels is a prerequisite in cartilage engineering. We recently demonstrated that a marine exopolysaccharide, GY785, stimulates the in vitro chondrogenesis of adipose stromal cells. In the present study, we thus hypothesized that enriching our silated hydroxypropyl methylcellulose hydrogel (Si-HPMC) with GY785 might offer new prospects in the development of scaffolds for cartilage regeneration. The interaction properties of GY785 with growth factors was tested by surface plasmon resonance (SPR). The biocompatibility of Si-HPMC/GY785 towards rabbit articular chondrocytes (RACs) and its ability to maintain and recover a chondrocytic phenotype were then evaluated in vitro by MTS assay, cell counting and qRT-PCR. Finally, we evaluated the potential of Si-HPMC/GY785 associated with RACs to form cartilaginous tissue in vivo by transplantation into the subcutis of nude mice for 3 weeks. Our SPR data indicated that GY785 was able to physically interact with BMP-2 and TGFβ. Our analyses also showed that three-dimensionally (3D)-cultured RACs into Si-HPMC/GY785 strongly expressed type II collagen (COL2) and aggrecan transcripts when compared to Si-HPMC alone. In addition, RACs also produced large amounts of extracellular matrix (ECM) containing glycosaminoglycans (GAG) and COL2. When dedifferentiated RACs were replaced in 3D in Si-HPMC/GY785, the expressions of COL2 and aggrecan transcripts were recovered and that of type I collagen decreased. Immunohistological analyses of Si-HPMC/GY785 constructs transplanted into nude mice revealed the production of a cartilage-like extracellular matrix (ECM) containing high amounts of GAG and COL2. These results indicate that GY785-enriched Si-HPMC appears to be a promising hydrogel for cartilage tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.
منابع مشابه
Hydrogels Containing Marine Polysaccharides For Bone and Cartilage Tissue Engineering
Introduction: The most common biopolymers used to build-up 3D scaffolds for bone and cartilage tissue engineering are chitosan, alginate, cellulose derivatives, hyaluronic acid, chondroitin sulfate, collagen and gelatin. In this study, we propose to evaluate the potential of two new marine exopolysaccharides (HE800 and GY785) that are glycosaminoglycan-like polymers and that can be produced in ...
متن کاملAn in vitro study of two GAG-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering.
Natural polysaccharides are attractive compounds with which to build scaffolds for bone and cartilage tissue engineering. Here we tested two non-standard ones, HE800 and GY785, for the two-dimensional (2-D) and three-dimensional (3-D) culture of osteoblasts (MC3T3-E1) and chondrocytes (C28/I2). These two glycosaminoglycan-like marine exopolysaccharides were incorporated into an injectable silyl...
متن کاملThe Effect of Rosmarinic Acid in Neural Differentiation of Wartons Jelly-derived Mesenchymal Stem Cells in Two Dimensional and Three Dimensional Cultures using Chitosan-based Hydrogel
Numerous studies have shown the positive effects of rosmarinic acid on the nervous system. Rosmarinic acid as a herbal compound with anti-inflammatory effects can prevent the destructive effect of inflammation on the nervous system. Furthermore, various studies have emphasized the advantages of three dimensional (3D) culture over the two dimensional (2D) culture of cells. In this study, thermos...
متن کاملAutologous Nasal Chondrocytes and a Cellulose-Based Self-Setting Hydrogel for the Repair of Articular Cartilage in Horses
Galway, Ireland Autologous Nasal Chondrocytes and a Cellulose-Based Self-Setting Hydrogel for the Repair of Articular Cartilage in Horses C. Vinatier; O. Geffroy; C. Merceron; O. Gauthier; B. H. Fellah; S. Portron; M. Masson; J. Lesoeur; P. Weiss; J. Guicheux 1,3 Corresponding Author: [email protected] 1 Inserm U 791, LIOAD, group “STEP” (skeletal tissue engineering and physiopatho...
متن کاملChitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering.
Chitosan-beta glycerophosphate-hydroxyethyl cellulose (CH-GP-HEC) is a biocompatible and biodegradable scaffold exhibiting a sol-gel transition at 37°C. Chondrogenic factors or mesenchymal stem cells (MSCs) can be included in the CH-GP-HEC, and injected into the site of injury to fill the cartilage tissue defects with minimal invasion and pain. The possible impact of the injectable CH-GP-HEC on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of tissue engineering and regenerative medicine
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2017